Optimal Anytime Search for Constrained Nonlinear Programming Table of Contents
نویسندگان
چکیده
In this thesis, we study optimal anytime stochastic search algorithms (SSAs) for solving general constrained nonlinear programming problems (NLPs) in discrete, continuous and mixed-integer space. The algorithms are general in the sense that they do not assume differentiability or convexity of functions. Based on the search algorithms, we develop the theory of SSAs and propose optimal SSAs with iterative deepening in order to minimize their expected search time. Based on the optimal SSAs, we then develop optimal anytime SSAs that generate improved solutions as more search time is allowed. Our SSAs for solving general constrained NLPs are based on the theory of discrete constrained optimization using Lagrange multipliers that shows the equivalence between the set of constrained local minima (CLMdn) and the set of discrete-neighborhood saddle points (SPdn). To implement this theory, we propose a general procedural framework for locating an SPdn. By incorporating genetic algorithms in the framework, we evaluate new constrained search algorithms: constrained genetic algorithm (CGA) and combined constrained simulated annealing and genetic algorithm (CSAGA). All these algorithms are SSAs. One of the most important and difficult issues in using SSAs is the scheduling of SSAs in order to optimize the average search efficiency. Our research shows that SSAs can be scheduled in such a way that minimizes their expected search time. The theory proposes to use iterative deepening to identify the optimal (up to a constant factor) schedules in such a way that minimizes the expected search time when
منابع مشابه
Constrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملOptimal Anytime Constrained Simulated Annealing for Constrained Global Optimization
In this paper we propose an optimal anytime version of constrained simulated annealing (CSA) for solving constrained nonlinear programming problems (NLPs). One of the goals of the algorithm is to generate feasible solutions of certain prescribed quality using an average time of the same order of magnitude as that spent by the original CSA with an optimal cooling schedule in generating a solutio...
متن کاملA Cuckoo search algorithm (CSA) for Precedence Constrained Sequencing Problem (PCSP)
Precedence constrained sequencing problem (PCSP) is related to locate the optimal sequence with the shortest traveling time among all feasible sequences. In PCSP, precedence relations determine sequence of traveling between any two nodes. Various methods and algorithms for effectively solving the PCSP have been suggested. In this paper we propose a cuckoo search algorithm (CSA) for effectively ...
متن کاملOptimal Solution in a Constrained Distribution System
We develop a method to obtain an optimal solution for a constrained distribution system with several items and multi-retailers. The objective is to determine the procurement frequency as well as the joint shipment interval for each retailer in order to minimize the total costs. The proposed method is applicable to both nested and non-nested policies and ends up with an optimal solution. To solv...
متن کامل